When Love Canal broke into headlines in 1978, American manufacturers must have suffered nightmare visions of themselves noosed by local laws and the vigilante mob. Better than anything else, they knew what poison they had been dumping into holes in the ground (or in nearby creeks) for the past twenty years. AND THEY ALSO KNEW THEY COULDN'T STOP DOING IT ANYTIME SOON. The present generation of manufacturing plants is based upon inefficient technologies that produce enormous quantities of waste, and not much can be done about that until America rebuilds its factories, which happens once every 50 years or so. Until a new industrial apparatus can be constructed, based upon closed-loop technology with zero discharge as its design goal, the old plants will continue spewing industrial poisons into the environment. [Any given plant can make the change anytime the managers decide to spend the money, but without pressure, they'll wait 50 years.]

Meanwhile, manufacturers in 1978 faced this serious problem: With thousands of dumps being discovered each year, along with manufacturing wastes being created at an accelerating pace (the rate of waste production increases at a steady 6% per year, which means that total waste production is doubling every 12 years--see RHWN #149), how could industry survive decades of confrontation with a newly-awakened, and outraged, public? How could industry finesse all the poisoning that had gone on, and at the same time keep pumping out new poisons at an accelerating pace? The public might be gullible, but were they really that gullible?

Luckily, Congress came to the rescue almost immediately by creating the Superfund law and the Resource Conservation and Recovery Act (RCRA). Superfund was to find "solutions" to old dumps, and RCRA was to assure the orderly creation of new ones.

Starting in 1980, Superfund created a brand new "site remediation" industry, which now spends roughly $2 billion per year and employs thousands of engineers and lawyers who spend their lives conducting technical studies and debates that go on for years (literally). The debates are, for the most part, conducted behind closed doors; the public is excluded; periodically, a public relations flak for the EPA (U.S. Environmental Protection Agency) (or for the state regulatory agency) emerges and holds a press conference to assure the public that "cleanup" is proceeding apace and all is well in the republic. "Cleanup" is never defined; the Superfund program still has no official answer to the question, "How clean is clean?" Meanwhile, across town a different group of EPA scientists (or state agency scientists) are closeted behind polished doors with a small cadre of industrial lawyers, putting the finishing touches on a new RCRA permit which allows the creation of yet another "state of the art" landfill or deepwell-injection hole. Or, as an alternative, the regulatory officials are signing off on a new scheme to dump chemical wastes into the local sewers (which is perfectly legal and has deflected public outrage. While Superfund was to assure the public that "cleanup" is proceeding apace and all is well in the republic, it is the Movement for Environmental Justice (though many of them may not even know they're part of something larger--they're often just focused on trying to stop the company down the block from spewing glop into their drinking water).

If you don't believe this picture of reality is overly cynical, take a careful look at an excellent video called TESTING THE WATERS, cited in our last paragraph, below. This video examines the processes that started in 1978 for cleaning up the Niagara River, near Love Canal. Cleanup of the Niagara River is important. The Niagara is a short river with tremendous flow (200,000 cubic feet per second) because it connects Lake Erie with Lake Ontario. It is also an important river because twenty-five percent of all Canadians (including everyone in Toronto, Canada's second-largest city) take their drinking water from Lake Ontario. All together, some 5 million people (Americans and Canadians) take their drinking water either directly from the Niagara River or from Lake Ontario, below the Niagara.

The Niagara River is known to most of us because it's the site of Niagara Falls, a romantic symbol of America's power and promise. What many of us don't know is that about a mile above the falls on the American side, there's a huge industrial complex--a cluster of enormous chemical factories--that began to grow in the 1890s and continued building throughout this century. The industry grew there because the site offered cheap hydroelectric power and a convenient place to dump chemical wastes.

It was the owners of this industrial complex who created Love Canal and 65 other huge chemical dumps along the banks of the Niagara River. The Niagara River hosts the greatest concentration of toxic dumps anywhere on the North American continent. Love Canal is not even the biggest of them--it is just the most famous. The Hyde Park dump contains 80,000 tons of toxins compared to Love Canal's 20,000 tons. The S site contains 70,000 tons; the 102nd Street Site contains 80,000 tons; and all stand within a few hundred yards of the river.

Now decisions are being made in the name of cleaning up the Niagara area. Here lessons will be learned and precedents will be set for the rest of the country, which is why this video is such an
important teaching tool. If offers us a crystal ball into the future of Superfund cleanups, and into the continued production of industrial poisons.

[To be continued next week.]

Get: TESTING THE WATERS produced by Lynn Corcoran. Educational version (an hour-long video in three 20-minute segments designed for classroom use) from Bullfrog Films, Oley, PA 19547; phone (800) 543-3764. $350 purchase or $75 rental for schools and citizen groups. An outstanding piece of work.

--Peter Montague

=====

Descriptor terms: niagara river; hazardous waste system; epa; rcra; superfund; remedial action; canada; love canal; hyde park, ny; landfilling; lake ontario; zero discharge; chemical industry; lynn corcoran; groundwater;